
First Steps in Robotics
with the

Thymio Robot
and the

Aseba/VPL Environment

Moti Ben-Ari and other contributors

see authors.txt for details

Version 1.5.1 for Aseba 1.5.2

© 2013–16 by Moti Ben-Ari and other contributors.

This work is licensed under the Creative Commons A�ribution-ShareAlike 3.0 Unported

License. To view a copy of this license, visit h�p://creativecommons.org/licenses/by-sa/3.0/ or

send a le�er to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,

94041, USA.

http://www.weizmann.ac.il/sci-tea/benari/
https://www.thymio.org/en:downloadinstall
http://www.weizmann.ac.il/sci-tea/benari/
http://creativecommons.org/licenses/by-sa/3.0/

Contents
I Tutorial 9

1 Your First Robotics Project 10

2 Changing Colors 17

3 Let’s Get Moving 20

4 A Pet Robot 23

5 The Robot Finds Its Way by Itself 27

6 Bells and Whistles 31

7 A Time to Like (Advanced Mode) 34

8 States (Advanced Mode) 36

9 Counting (Advanced Mode) 43

10 Accelerometers (Advanced Mode) 47

II Parsons Puzzles 49

11 Parsons Puzzles for VPL 50

III Projects 55

12 Braitenberg Creatures 56

13 The Rabbit and the Fox 58

14 Reading Barcodes 59

15 Sweeping the Floor 60

16 Measuring Speed 61

17 Catch the Speeders 62

18 Finite Automata 63

19 Multiple Sensor Thresholds 66

2

20 Multiple Thymios 68

IV From visual to textual programming 69

21 Learning AESL from VPL programs 70

V Appendices 83

A The VPL User Interface 84

B Summary of VPL Blocks 86

C Tips for Programming with VPL 89

D Techniques for Using the Sliders 91

3

Preface
What is a robot?

You are riding your bicycle and suddenly you see that the street starts to go uphill. You

pedal faster to supply more power to the wheels so that the bicycle won’t slow down. When

you reach the top of the hill and start to go downhill, you squeeze the brake lever. This

causes a rubber pad to be pressed against the wheel and the bicycle slows down. When you

ride a bicycle, your eyes are sensors that sense what is going on in the world. When these

sensors—your eyes—detect an event such as a curve in the street, you perform an action, such

as moving the handlebar le� or right.

In a car, there are sensors that measure what is going on in the world. The speedometer

measures how fast the car is going; if you see it measuring a speed higher than the limit, you

might tell the driver that he is going too fast. In response, he can perform an action, such as

stepping on the brake pedal to slow the car down. The fuel meter measures how much fuel

remains in the car; if you see that it is too low, you can tell the driver to find a gas station. In

response, he can perform an action: raise the turn-signal lever to indicate a right turn and

turn the steering wheel in order to drive into the station.

The rider of the bicycle and the driver of the car receive data from the sensors, decide what

actions to take and cause the actions to be performed. A robot is a system where this process

is carried out by a computerized system, usually without the participation of a human.

The Thymio robot and the Aseba VPL environment

The Thymio is a small robot intended for educational purposes (Figure 1.1). The robot includes

sensors that can measure light, sound and distance, and can detect when bu�ons are touched

and when the robot’s body is tapped. The most important action that it can perform is to

move using two wheels, each powered by its own motor. Other actions include generating

sound and turning lights on and o�.

The name Thymio is used in this document to refer to the Thymio II robot.

Aseba is a programming environment for small mobile robots such as the Thymio. VPL is a

component of Aseba for visual programming that was designed to program Thymio in an easy

way through event and action blocks.

Overview of the tutorial

For each chapter, we give the main topic, as well as lists of the event and action blocks that are

introduced. I suggest that you start with the tutorial chapters on VPL basic mode. Then, you

4

can study the tutorial on advanced mode, or try some of the projects. The Parsons puzzles can

be tried whenever you feel the need to evaluate your knowledge of VPL. Read the Chapter 21

when you are ready to leave VPL and work with the more advanced Aseba Studio environment.

The appendices contain reference material that can be read as needed.

Part I: Tutorial

Chapters 1 and 2 are an essential introduction to the robot, the VPL environment and its

principal programming construct: the event-actions pair.

Events: Bu�ons Actions: Top colors, bo�om colors

Chapters 3 to 5 present the events, actions and algorithms for constructing autonomous

mobile robots and should be the core of any activity using Thymio and VPL.

Events: Bu�ons, front sensors, bo�om sensors Actions: Motors

Chapter 6 describes features of the robot that can be fun to use but are not essential: sounds

and shocks.

Events: Tap, clap Actions: Music, top colors, bo�om colors

VPL has a basic mode which supports elementary events and actions that are easy for

beginners to master. The advanced mode of VPL supports more events and actions

that require experience to use. Explanations of the features of advanced mode start in

Chapter 7.

Advanced mode

Chapter 7 presents timed events. There is an action to set a timer and when the timer expires,

an event occurs.

Events: Timer expired Actions: Set timer

5

Chapters 8 and 9 explain state machines, which enable the robot to perform di�erent

operations at di�erent times. States can also be used to perform elementary arithmetic like

counting.

Events: State associated with an event Actions: Change state

Chapter 10 describes how to use the accelerometers in the Thymio robot.

Events: Accelerometer events

Part II: Parsons puzzles

Chapter 11 presents Parsons puzzles which are exercises that you can use to check your

knowledge of VPL.

Part III: Projects

Chapters 12 to 20 specify projects that you can design and implement on your own. The

VPL source is available in the archive, but I suggest that you work on the projects before

looking at the solutions.

Part IV: From visual to textual programming

Chapter 21 points to the next step: using the textual Studio environment which o�ers

significantly more support for developing robots than does the VPL environment.

Part V: Appendices

Appendix A contains a description of the user interface—the bu�ons on the toolbar.

Appendix B is a list of the event and action blocks in both basic and advanced modes.

Appendix C provides guidance for teachers and mentors of students. The first section

suggests ways to encourage exploration and experimentation. The next section focuses on

good programming practices. The final section lists some pitfalls that may be encountered

and o�ers hints on how to overcome them.

Appendix D describes techniques for working with the sliders of the sensor and motor blocks.

6

Reference cards

You will find it useful to print out one or both of the VPL reference cards, which are in the same

zip file as this document and also available at h�ps://www.thymio.org/en:visualprogramming.

• A single page that summarizes the event and action blocks.

• A two-sided page that can be folded to form a handy card. It summarizes the VPL

interface, the event and action blocks, and includes example programs.

Installing Aseba

To install Aseba, including VPL, go to h�ps://www.thymio.org/en:start and click on the icon

for your system (Windows, Mac OS, etc.). Following the instructions to download and install

the so�ware. The Aseba installation includes both the VPL and the Studio (see Chapter 21)

development environments.

7

https://www.thymio.org/en:visualprogramming
https://www.thymio.org/en:start

VPL Tutorial Version History
Version 1.5

• Events are now implemented using the AESL programming language structure when
instead of if. This means that events will occur only when the event initially occurs and

not repeatedly, as explained on page 74. This change might cause unexpected behavior

in some programs described in this tutorial.

• Dynamic feedback of the execution is implemented (page 19).

Version 1.4

• The graphic design of the bu�ons for the blocks has been changed, primarily to support

additional features.

• In 1.3, a red box in the event block for a horizontal sensor caused an event when the

sensor detected an object, while a white box caused an event when there was no object

in front of the sensor. In 1.4, a white box causes an event when a lot of reflected light is

detected from an object, while a black box causes an event when li�le or no reflected

light is detected because there is no object in front of the sensor (pages 21, 23). The

ground sensors also use white and black, instead of white and red, but the behavior in

1.4 is the same as in 1.3 except that black is used instead of red.

• In advanced mode, the thresholds of sensors can be set (page 92).

• In advanced mode, an event can be associated with ranges of values of the forward/back-

ward and le�/right accelerometers (page 47).

• Multiple actions associated with an event (page 19).

• Blocks and event-actions pairs can be copied (page 16).

• Screenshots of VPL programs can be exported in several graphics formats (page 85).

• Undo/Redo bu�ons have been added (page 84).

• The Run bu�on blinks green when the program has been changed (page 16).

• It is no longer possible to change the color scheme of VPL.

8

Part I

Tutorial

9

Chapter 1

Your First Robotics Project

Ge�ing to know your Thymio

Figure 1.1 shows the front and top of Thymio. On the top you can see the center circular

bu�on (A) and four directional bu�ons (B). Behind the bu�ons, the green light (C) shows how

much charge remains in the ba�ery. At the back are the top lights (D), which have been set

to red in this picture. There are similar lights on the bo�om (see Figure 3.1). The small black

rectangles (E) are sensors which you will learn about in Chapter 4.

Figure 1.1: The top and front of the Thymio robot

Connect the robot and run VPL

Connect your Thymio robot to your computer with a USB cable; the robot will play a sequence

of tones. If the robot is turned o�, turn it on by touching the center bu�on for a few seconds

until you hear the tones. Run VPL by double-clicking on the icon on your computer.

10

Figure 1.2: Connect to Thymio through serial port (USB)

When a small image appears in the text, a larger image is displayed in the margin.

Small images

VPL may connect automatically to your robot. If not, the window shown in Figure 1.2 will be

displayed. Check the box next to Serial, click on Thymio Robot below it, select a language,

and then click Connect. Depending on the configuration of your computer and operating

system, there may be several entries in this table and the data following Thymio Robot may

be di�erent from what is shown in the Figure.

It is also possible to access VPL from Aseba Studio, the text-based programming

environment through the VPL plugin found in the Tool area at the bo�om le� of the

screen.

Trick

Wireless Thymio

The Thymio robot comes in a wireless version that does not need to be connected to a computer

in order to load programs. The wireless robot comes with a small object called a dongle:

11

Plug the dongle into a USB socket on your computer, turn the robot on and start VPL, as

described above. When you see the connection window (Figure 1.2) select the line Thymio-II
Wireless (COM15).

You need to use the USB cable to charge the Thymio (Figure 1.4).

Important information

The VPL user interface

The user interface of VPL is shown in Figure 1.3. There are six areas in the interface:

1. A toolbar with bu�ons for opening, saving, running a program, etc.

2. A program area where programs for controlling the robot are constructed.

3. A message area which displays error messages if the program is not well-formed.

4. A column with event blocks for constructing your program.

5. A column with action blocks for constructing your program.

6. The translation of the program into AESL, the textual language of Aseba.

Appendix A contains a description of all the bu�ons in the VPL toolbar.

Look at it occasionally until you have learned how to use them.

The VPL toolbar

When you construct a program using VPL, the translation of the program into the

textual programming language AESL appears in the right part of the window. It is the

AESL program that is actually run by the robot. Chapter 21 explains these transla-

tions. The webpage h�ps://www.thymio.org/en:asebausermanual contains learning

and reference materials on AESL and its Studio environment.

To go further

12

https://www.thymio.org/en:asebausermanual

Figure 1.3: The VPL window

Write a program

When you start VPL, a blank program area is displayed.

If, a�er having built a piece of program, you wish to clear the content of the program area,

click (New).

A program in VPL consists of event-actions pairs, each constructed from an event block and

one or more action blocks. For example, the pair:

causes the top light of the robot to display red when the front bu�on is touched.

When the event occurs, the associated actions are run.

Meaning of an event-actions pair

The program area will initially contain an empty frame for an event-actions pair:

To bring a block to the program area from the columns (areas 4 and 5 of Figure 1.3), press and

hold the le� mouse bu�on and drag the block to a dashed square. When the block is over the

square, release the mouse bu�on, dropping the block into its place.

13

The technique just described is call drag-and-drop and is widely used in the user

interface of programs.

Important information

Start by bringing the bu�on event block into the le� side of the empty frame. You will get

a message inviting you to add an action block. Drag the top color action block and drop it

into the right side of the frame. You have constructed an event-actions pair!

Next, we have to modify the event and the action to do what we want. For the event, click on

the front bu�on (the top triangle); it will turn red:

This specifies that an event will occur when the front bu�on of Thymio is touched.

The color action block contains three sliders—colored bars with a white square—one for each

of the primary colors red, green, blue. Drag a white square to the right and then back to the

le�, and you will see that the background color of the block changes. All colors can be made

by mixing these three primary colors: red, green and blue. Move the red slider until the square

is at the far right, and move the green and blue sliders until they are at the far le�. The color

will be all red with no blue nor green:

Save the program

Before running the program, save it on your computer. Click on the bu�on (Save) in the

toolbar. You will be asked to give the program a name; choose a name that will help you

remember what the program does, perhaps, display-red. Choose the location where you

want to save your program and click on Save.

When you modify a program, click Save frequently so that you don’t lose your work if

something happens to the computer.

Save frequently

Run the program

To run the program, click on (Run) in the toolbar. Touch the front bu�on on the robot; the

light on top of the robot should change to red.

14

Figure 1.4: The back of the Thymio showing the USB cable and the charging light

You have created and run your first program. Its behavior is:

When you touch the forward bu�on of the Thymio, it becomes red.

Congratulations!

If you need to stop the VPL program, click (Stop) . This is important when you run a

program that causes the robot to move, but the program does not have an event-actions pair

to stop the motors.

Turn the robot o�

When you have finished working with the Thymio robot, turn it o� by touching and holding

the center bu�on for a few seconds until you hear a sequence of tones. The ba�ery will

continue charging as long as it is connected to a working computer. A red light next to the

USB cable connector means that the robot is charging; it turns blue when the charging is

completed (Figure 1.4). You can disconnect the cable when you are not using the robot.

To charge the robot faster, use a mobile phone charger with a micro-USB connector.

Trick

Should the USB cable disconnect during programming, VPL will wait for the connection to be

made again. Check both ends of the cable, reconnect and see if VPL is working. If you have a

problem, you can always close VPL, reconnect the robot and open VPL again.

Modify a program

• To delete an event-actions pair, click at the top-right of the pair.

15

• To add an event-actions pair, click available below an existing pair.

• To move an event-actions pair to another position in the program, drag and drop it at

the desired location.

• To copy an event-actions pair to another position in the program, press and hold the

Ctrl and then use the mouse to drag and drop the pair at the desired location.
1

When you modify a program, the Run bu�on blinks blue and green to remind you

that you need to click the bu�on to load the modified program into the Thymio robot.

The blinking Run bu�on

If you want to experiment with a modification but not lose an existing program, you can

create a copy of the existing program by clicking (Save as) and giving a new file name.

Open an existing program

Suppose that you have saved your program and turned o� the robot and the computer,

but later you wish to continue to work on the program. Connect the robot and run VPL

as described previously. Click on (Open) and select the program you want to open, for

example, display-red. The event-actions pairs of the program will be displayed in the program

area, and you can continue working on it.

The current event-actions pair

When you click on an event-actions pair, it will be displayed with a yellow background. This

will also occur when you enter an event or action block in an empty pair:

The le� gold-colored square is the space for the event; the right blue-colored square is for the

first (or only) action. The pair with the yellow background is called the current pair.

If you click on an event or action block, it will be automatically placed in the program

area in the current event-actions pair.

�ick entering of a block

1

On Mac OS, the Command bu�on is used instead of ctrl.

16

Chapter 2

Changing Colors

Display colors

Create a program that causes two di�erent colors to be displayed on the top of the Thymio

robot when the front and back bu�ons are touched, and two other colors to be displayed on

the bo�om of the robot when the le� and right bu�ons are touched.

Program file colors.aesl

We need four event-actions pairs. There are four events—touching the four bu�ons—and a

color action is associated with each event. Note the di�erence between the action blocks

and . The first block changes the color displayed on the top of the robot, while the second

changes the color on the bo�om of the robot. The block for the bo�om light has two black

marks that represent the wheels and a white dot representing the support at the front of the

robot (Figure 3.1).

The program is shown in Figure 2.1.

What colors are displayed? In the first three actions, the slider for one color is moved to the

right edge, while the sliders for the other two colors are moved to the le� edge. The colors are

not mixed so these actions display pure red, blue and green, respectively. The action associated

with the le� bu�on mixes red and green giving yellow. You can see that the background of

the block changes when the sliders are moved and shows which color the robot will display.

Run the program and touch the bu�ons to change the robot’s colors. Figure 1.1 shows the

Thymio displaying red on the top and Figure 3.1 shows it displaying green on the bo�om.

Experiment with the sliders to see which colors can be displayed.

Exercise 2.1

By mixing together red, green and blue, you can make any color (Figure 2.2)!

Information

17

Figure 2.1: Changing colors when a bu�on is touched

red green

blue

red green

blue

Figure 2.2: The red-green-blue (RGB) color cube

18

Multiple actions associated with one event

Let us modify the program so that the lights are turned o� when the center bu�on is touched.

We need two actions to occur when a single event—touching the center bu�on—occurs. We

can associate two actions with one event in an event-actions pair. A�er inserting the event

and the first action (the top color action), a gray outline will appear to the right of the action:

You can now drag and drop the bo�om color action into this outline, giving a pair with one

event and two actions:

Program file colors-multiple.aesl

Don’t forget to click to run the program. In the future, we will not remind you to click this

bu�on to run a program.

• When a program is run, all the event-actions pairs in the program are run.

• It is possible for several event-actions pairs to have the same event as long as their

parameters are di�erent. For example, you can have several pairs with the bu�on

event, if di�erent sets of bu�ons are required for di�erent events.

• If the event is exactly the same in two or more pairs, VPL will display an error message

(in area 3 in Figure 1.3). You will not be able to run the program as long as there are

errors.

Rules for event-actions pairs

Dynamic feedback

Whenever a bu�on is touched, an event is generated and the event-actions pair associated

with that event is run. VPL provides dynamic feedback so that you can see exactly which pair

is run. The pair is emphasized with a yellow frame and a yellow arrow to its le�:

The feedback will appear briefly when the event occurs and then it is removed. For example,

if you touch a bu�on, an event is generated when the bu�on is first touched. If you continue

to touch the bu�on, no additional events are generated, so the the feedback will be removed.

It will re-appear only if you release the bu�on and then touch it again.

19

Chapter 3

Let’s Get Moving

Move forwards and backwards

The Thymio robot has two motors, one connected to each wheel. The motors can be run

forwards and backwards, causing the robot to move forwards and backwards, and to make

turns. Let us start with a simple project to learn about the motors.

The motor action block displays a small image of the robot in the center together with

two sliders. The sliders control the speed of the motors, one slider for the le� motor and

one for the right motor. When the black frame is centered on the red dot in the slider, the

corresponding motor is o�. You can drag the frame up above the red dot to increase the

forward speed and down below the red dot to increase the backwards speed. Let us write a

program to move the robot forward when the front bu�on is touched and backwards when

the back bu�on is touched.

Program file moving.aesl

We need two event-actions pairs:

Drag and drop the event and action blocks and set the sliders equally for the le� and right

motors, half-way up for forward and half-way down for backwards.

Run the program and touch the bu�ons to make the robot go forwards and backwards.

Stop the robot

Help! I can’t stop the robot’s motors!

Click on the bu�on to stop the robot.

20

Let us fix this problem by adding an event-actions pair that will stop the motors when the

center bu�on is touched:

When you drag the motor action block into the program area, it is already set with the sliders

in the middle to turn o� the motors.

Don’t fall o� the table

If your robot moves on the floor, at worst it might hit a wall, but if you place your robot on a

table, it might fall o�, crash and break! Let us arrange for the robot to stop when it reaches

the end of a table.

Whenever the robot moves on a table, be ready to catch it in case it does fall o�.

Warning!

Turn the Thymio on its back. You will see at the front two small black rectangles with optical

elements inside; they are displayed at the top of Figure 3.1. These are the ground sensors.
They send a pulse of infrared light and measure the amount of light that is reflected. On a

light-colored table, there is a lot of reflected light, but when the front of the robot goes past

the end of the table, there will be much less reflected light. When this is detected we want

the robot to stop.

Use a table colored with a light color or tape a sheet of white paper on the table. Don’t

use a glass table, as it will likely not reflect the light and Thymio will believe that it is

not on a table!

Trick

Drag and drop the ground sensor event into the program. There are two small squares at

the top of the block. Clicking the squares changes them from gray to red to black and finally

back to gray. For this block, the meanings of these colors are:

• Gray: The sensor is not used.

• White:An event occurs when there is a lot of reflected light. Next to the white square a

small red dot will be displayed; this dot corresponds to the small red light next to each

sensor that is turned on when the sensor detects something.
1

1

The white square has a red border to remind you that the event will occur when the lights next to the sensor

itself are red.

21

Figure 3.1: The bo�om of the Thymio with two ground sensors at the front

• Black: An event occurs when there is li�le reflected light.

To cause the robot to stop at the border of the table (when there is li�le reflected light), click

both squares until they are black. Create the following event-actions pair:

Place the robot near the edge of the table, facing the edge, and touch the front bu�on. The

robot should move forward and stop before falling o� the table.

Experiment with the speed of the robot. At maximum speed, is the robot still able to

stop and not fall o� the table? If not, at what speed does the robot start to fall o�?

Can you stop the robot from falling o� when it is going backwards?

Exercise 3.1

When I ran the program, the robot did fall o�. The reason was that my desk has a

rounded edge; by the time that the robot detected a low level of reflected light, it was

no longer stable and tipped over. My solution was to place a strip of black tape close to

the edge of the desk.

Warning!

22

Chapter 4

A Pet Robot

Autonomous robots display independent behavior that is normally associated with living

things like cats and dogs. The behavior is achieved by feedback: the robot will sense that

something occurs in the world and modify its behavior accordingly.

The robot obeys you

We will program the robot to obey: the robot stays in place without moving, but when it

detects your hand in front of it, it moves towards your hand.

Program file obeys.aesl

There are five horizontal distance sensors on the front of the Thymio robot and two on the

rear. They are similar to the ones under Thymio that we used in Chapter 3. Bring your hand

slowly towards the sensors; when it gets close, red lights will appear around the sensors that

detect your hands (Figure 4.1).

The block is used to sense if something is close to a sensor or not. In either case it causes

an event to occur. The small squares in the block (five on the front and two on the rear) are

used to specify when an event occurs. Clicking on a square changes it from gray to white to

black and back to gray. The meaning of these colors is:

• Gray: The sensor is not used.

• White: An event occurs when there is a lot of reflected light. The white square has a

red border to remind you that the event will occur when the lights next to the sensor

itself are red.

• Black: An event occurs when there is li�le reflected light.

Figure 4.1: The front of the Thymio. Two sensors detect the fingers.

23

Figure 4.2: Moving towards your hand Figure 4.3: A bulldozer with tracks

If you wish an event to occur when an object is close to the sensor, use a white square because

the object will reflect a lot of light. If you wish an event to occur when no object is close to

the sensor, use a black square because li�le light will be reflected.

To implement the required behavior, we need two event-actions pairs (Figure 4.2). In the

first pair, the center front sensor is black and the associated action is that the motors are o�.

Therefore, when the robot does not detect an object, it will not move, and it will stop if it

had been moving. In the second pair, the center front sensor is white and the sliders of the

motor block are at the top. Therefore, when you bring your hand near the front of the robot,

an event occurs that causes both motors to run quite fast and the robot to move forward.

Steering the Thymio robot

The Thymio robot does not have a steering wheel like a car or a handlebar like a bicycle. So

how can it turn? The robot uses di�erential drive, which is familiar from tracked vehicles like

the bulldozer (Figure 4.3). Instead of turning a handlebar a desired direction, the le� and right

tracks or wheels are driven by individual motors at di�erent speeds. If the right track moves

faster than the le� one, the vehicle turns le�, and if the le� track moves faster than the right

one, the vehicle turns right.

Di�erential drive for the Thymio robot is implemented by se�ing the le� and right sliders of

a motor action block—and therefore the wheel speeds—to di�erent values. The greater the

di�erence between the speeds, the tighter the turn. To achieve a large di�erence of speeds,

drive one track forward and one track backwards. In fact, if one track moves forward at a

certain speed, while the other track moves backwards at the same speed, the Thymio turns in

place. For example, in the motor action block , the le� slider has been set for fast speed

backwards, while the right slider has been set for fast speed forwards. The result is that the

robot will turn to the le�.

24

(a) The robot likes you (b) The robot doesn’t like you

Figure 4.4: Programs for the pet robot

Experiment with an event-actions pair such as:

Set the le� and right sliders, run the program and touch the center bu�on; to stop the robot

click on . Now you can change the sliders and try again.

The small image of Thymio in the center of the motor action block shows an animation

of the movement of the robot when you move the sliders. When the animation stops,

the image shows the direction in which the robot will move when this action block is

run.

Trick

The robot likes you

A real pet follows you around. To make the robot follow your hand, add two additional

event-actions pairs: if the robot detects an object in front of its le�-most sensor, it turns to

the le�, while if it detects an object in front of its right-most sensor, it turns to the right.

Program file likes.aesl

The program consists of two event-actions pairs (Figure 4.4(a)). Experiment with the sliders

on the motor action blocks.

25

Modify the behaviour of the robot so that it moves forward when the program is run

and stops when it detects the edge of a table (or a strip of black tape).

Exercise 4.1

What happens if you change the order of the event-actions pairs that you used in the

previous exercise?

Exercise 4.2

The robot doesn’t like you

Sometimes your pet may be in a bad mood and turn away from your hand. Write a program

that causes this behavior in the robot.

Program file does-not-like.aesl

Open the program for the pet that likes you and exchange the association of the events with

the actions. Detection of an object by the le� sensor causes the robot to turn right, while

detection of an object by the right sensor causes the robot to turn le� (Figure 4.4(b)).

The front horizontal sensors are numbered 0, 1, 2, 3, 4 from the le� of the robot to its

right. The rear sensors are numbered 5 for the le� one and 6 for the right one. Modify

the programs in Figure 4.4 so that instead of using sensors 0 and 4:

• Use sensors 1 and 3 to turn the robot le� and right, respectively.

• Use both sensors 0 and 1 to turn the robot le� and both sensors 3 and 4 to turn the

robot right.

• Add event-actions pairs for the rear sensors 5 and 6.

Exercise 4.3

Appendix D explains how to set the sliders to precsie motor speeds.

Trick

In advanced mode (Chapter 7), there is a fourth mode for specifying when sensors

cause events, in addition to modes indicated by gray, white and black. See Appendix D.

Sensors in advanced mode

26

Chapter 5

The Robot Finds Its Way by Itself

Consider a warehouse with robotic carts that bring objects to a central dispatching area.

There are lines painted on the floor of the warehouse and the robot receives instructions

to follow certain lines until it reaches the storage bin of the desired object. Let us write a

program that causes the robot to follow a line on the floor.

Program file follow-line.aesl

The line-following task brings out all the uncertainty of constructing robots in the real world.

The line might not be perfectly straight, dust may obscure part of the line, or dirt may cause

one wheel to move more slowly than the other one. To follow a line, the robot must use

a controller that decides how much power to apply to each motor depending on the data

received from the sensors.

The line and the robot

To follow a line, we use the ground sensors (Chapter 3). Remember that these work by sending

infrared light (which is invisible to human eye) and measuring how much is reflected back. If

the floor is light-colored, the sensor will detect a lot of reflected light and the event will

occur. We need a line that will cause an event to occur when there is li�le reflected light .

This is easy to do by printing a black line on paper and taping it to the floor or by a�aching

black electrician’s tape on the floor (Figure 5.1(a)). The line must be wide enough so that both

ground sensors will sense black when the robot is successfully following the line. A width of 5

centimeters is su�icient for the robot to follow the line even if there are small deviations.

To implement line-following, first, we cause the robot to move forward whenever both sensors

detect a dark surface—it is on the line—and to stop whenever both sensors detect a light

surface—it is not on the line. See Figure 5.2(a).

Make sure that you use a USB cable that is long enough (say, two meters), so that the

Thymio can stay connected to the computer even as it moves. You can find extension

cables in any computer shop.

Trick

27

(a) Thymio following a line of tape (b) The le� sensor is o� the tape and the right

sensor is on the tape. The red dot indicates

that the le� sensor detects a lot of reflected

light

Figure 5.1: Thymio on a black tape

(a) Start and stop the robot (b) Correcting deviations

Figure 5.2: A program for line following

28

If you have a wireless Thymio it can move freely without being limited by the length

of the cable.

Wireless Thymio

Your first controller

The next step is to program the controller that follows the line. Two event-actions pairs are

needed (Figure 5.2(b)).

• If the robot moves o� the tape to the le� (Figure 5.1(b)), the le� sensor will detect the

floor while the right sensor is still detecting the tape; the robot must turn slightly to

the right.

• If the robot moves o� the tape to the right, the right sensor will detect the floor while

the le� sensor is still detecting the tape; the robot must turn slightly to the le�.

Se�ing the parameters

It is easy to see that if the robot runs o� the le� edge of the tape, it has to turn to the right

(Figure 5.1(b)). The question is how tight should the turn be? If the turn is too gentle, the

right sensor might also run o� the tape before the robot turns back; if the turn is too sharp, it

might cause the robot to run o� the other end of the tape. In any case, sharp turns can be

dangerous to the robot and cause whatever it is carrying to fall o�.

You will need to experiment with the speeds of the le� and right motors in each motor action

block until the robot runs reliably. Here, reliably means that the robot can successfully follow

the line several times. Since each time you place the robot on the line you might place it at a

slightly di�erent position and point it in a slightly di�erent direction, you need to run several

tests to make sure that the program works.

The forward speed of the robot on the line is also an important parameter. If it is too fast, the

robot can run o� the line before the turning actions can a�ect its direction. If the speed is too

slow, no one will buy your robot to use in a warehouse.

The robot stops when both ground sensors detect that they are o� the tape. Modify the

program so that the robot makes a gentle le� turn in an a�empt to find the tape again.

Try it on a tape with a le� turn like the one shown in Figure 5.1(a). Try increasing the

forward speed of the robot. What happens when the robot gets to the end of the tape?

Exercise 5.1

29

Modify the program from the previous exercise so that the robot turns right when it

runs o� the tape. What happens?

It would be nice if we could remember which sensor was the last one to lose contact

with the tape in order to cause the robot turn in the correct direction to find the tape

again. In Chapter 8 we will learn how Thymio can remember information.

Exercise 5.2

Experiment with di�erent arrangements of the lines of tapes:

• Gentle turns;

• Sharp turns;

• Zigzagging lines;

• Wider lines;

• Narrow lines.

Run competitions with your friends: Whose robot successfully follows the most lines?

For each line, whose robot follows it in the shortest time?

Exercise 5.3

Discuss what e�ect the following modifications to the Thymio would have on the

ability of the robot to follow a line:

• Ground sensing events occur more o�en or less o�en.

• The sensors are further apart or closer together.

• There are more than two ground sensors on the bo�om of the robot.

Exercise 5.4

30

Chapter 6

Bells and Whistles

Let’s have some fun with the robot. We show how the Thymio can play music, respond to a

sound or react when it is tapped.

Playing music

The Thymio robot contains a sound synthesizer and you can program it to play simple tunes

using the music action block:

Program file bells.aesl

You won’t become a new Beethoven—you can only play six notes using five tones of two

di�erent lengths—but you can compose a short tune. Figure 6.1 shows two event-actions pairs

that causes a tune to be played when the front or the back bu�on is touched. A di�erent tune

associated with each event: twice long-short-rest or twice short-long-rest.

The six small circles are notes. A black circle is a short note, a white circle is a long note and a

blank is a rest. To change from one length to the other, click on the circle. There are five gray

horizontal bars, representing five tones. To move a circle to one of bars, click on the bar above

or below the circle, or drag-and-drop the note to a bar.

Figure 6.1: Playing a tune

31

Write a program that will enable you to send a message is Morse code. Le�ers in

Morse code are encoded in sequences of long tones (dashes) and short tones (dots). For

example, the le�er V is encoded by three dots followed by one dash.

Exercise 6.1

Controlling your robot by sound

The Thymio has a microphone. The event occurs when the microphone senses a loud noise,

for example, from clapping your hands. The following event-actions pair will turn on the

bo�om lights when you clap your hands:

In a noisy environment you may not be able to use this event, because the sound level

will always be high and cause repeated events.

Information

Write a program that causes the robot to move when you clap your hands and to stop

when you touch a bu�on.

Write a program that does the opposite: the robot starts moving when you touch a

bu�on and stops when you clap your hands.

Exercise 6.2

Good job, robot

Pets don’t always do what we ask them to do. Sometimes they need a pat on the head to

encourage them. You can do the same with your robot. The Thymio contains a tap sensor that

causes the event to occur in response to a quick tap on the top of the robot. The following

event-actions pair causes the top lights to turn on when you tap the top of the robot:

32

http://en.wikipedia.org/wiki/Morse_code

Construct a program from this event-actions pair and the following pair that turns on the

bo�om lights when you clap your hands:

Program file whistles.aesl

Can you turn on just the top lights? This is di�icult to do: a tap causes a sound that can be

loud enough to cause the bo�om lights to be turned on as well. With a li�le practice I was

able to tap the robot gently enough so that the sound of the tap was not considered an event.

Write a program that causes the robot to move forward until it hits a wall.

Make sure that the robot moves slowly so that it doesn’t damage itself.

Exercise 6.3

33

Chapter 7

A Time to Like (Advanced Mode)

In Chapter 4 we programmed a pet robot which either did or did not like us. Let us consider a

more advanced behavior: a shy pet who can’t make up its mind whether it likes us or dislikes

us. Initially, the pet will turn towards our outreached hand, but then it will turn away. A�er a

while, it will reconsider and turn back in the direction of our hand.

Program file shy.aesl

When the right bu�on is touched the robot turns to the right:

When it detects your hand, it turns to the le�:

The behavior of turning back “a�er a while” can be divided into two parts:

• When the robot starts to turn away→ start a timer for two seconds.

• When the timer runs down to zero→ turn to the right.

We need a new action for the first part and a new event for the second part.

The action to set a timer is like an alarm clock . Normally, we set an alarm clock to an

absolute time, but when I set the alarm clock in my smartphone to an absolute time like 07:00,

it tells me the relative time: “Alarm set for 11 hours and 23 minutes from now.” You can set

the timer action block for a certain number of seconds; when the timer has expired—that is,

when the number of seconds has passed from the se�ing of the timer—a timer event occurs.

The timer can be set for up to four seconds, where each second is represented by one quarter

of the clock face. Click anywhere within the white circle; there will be a short animation and

then the appropriate part of the clock face will be colored dark blue.

Timers are supported in advanced mode. Click on to enter advanced mode.

The icon will change to and you can click on it to change back to basic mode.

Advanced mode

34

The event-actions pair for this first part of the behavior is:

When the event of detecting your hand occurs, there will be two actions: turning the robot to

the le� and se�ing the timer to two seconds.

The second part of the behavior uses a ringing-alarm-clock timer event that occurs when

the amount of time set on the timer expires.

Here is the event-actions pair to turn the robot to the right when the timer expires:

Write a program that causes the robot to move forward at top speed for three seconds

when the forward bu�on is touched; then it runs backwards. Add an event-actions pair

to stop the robot by touching the center bu�on.

Exercise 7.1

35

Chapter 8

States (Advanced Mode)

A program in VPL is a list of event-actions pairs. All the events are checked periodically and

the appropriate actions are taken. This limits the programs that we can create. To develop

more complex programs, we need a way to specify that some event-actions pairs are active,

while others are not.

For example, in the line-following program in Chapter 5, when the robot runs o� the tape, we

want it to turn le� or right to search for the tape with the direction depending on which side

it ran o�. There will be two event-actions pairs: one to turn le� when the robot runs o� the

right of the tape and one to turn right when it runs o� the le� of the tape.

Tap, tap

In many programs, we used one bu�on to start the robot’s behavior and another to stop

it. Consider, though, the power switch on a computer. The same switch is used to turn the

computer on and o�; the computer remembers whether it is in the state on or the state o�.

Write a program that turns the robot’s lights on when it is tapped and turns them o� when

tapped again.

Program file tap-on-o�.aesl

It is convenient to display the required behavior in a state diagram:

&%
'$

o� &%
'$

on

-tap→ turn on

� tap→ turn o�

In the diagram there are two states indicated by circles labeled with the names of the states

o� and on. From state o� the robot can go to state on and back, but only by following the

instructions on the arrows. The instructions describe when a transition from one state to

another can occur and what happens when it does occur:

• When the robot is in state o� and the tap event occurs→ turn the lights on and go to

state on.

• When the robot is in state on and the tap event occurs→ turn the lights o� and go to

state o�.

36

The emphasized word and before the arrow→ means that there are two conditions that must

be true in order for the transition to be taken. (a) The robot must be in a certain state and (b)

the event must occur. When both conditions are true, the transition is taken, causing both

the state to change and the action wri�en a�er the arrow→ to be performed.

It is important to realize that the two parts of the condition are independent. In the above

diagram (repeated here), the event tap appears twice, but the action caused by the occurrence

of this event depends on which state the robot is in.

&%
'$

o� &%
'$

on

-tap→ turn on

� tap→ turn o�

In a single state, di�erent events can cause di�erent actions and di�erent transitions. In

the following diagram, touching the le� bu�on in the state o� causes the green light to be

turned on and a change to state on1, while touching the right bu�on in the same state causes

a di�erent action, the red light is turned on, and a change to a di�erent state, on2.

��
��

o�

��
��

on2

-��
��

on1

-

le� bu�on→ turn green

right bu�on→ turn red

Implementing state diagrams with event-actions pairs

Figure 8.1 shows the implementation of the behavior described in the state machine above.

The le� circle in the block is checked (and is displayed in red) to indicate that this is a

block for the tap event.

The block for the tap event is di�erent in advanced mode, because it is also used for

accelerometer events as described in Chapter 10.

The tap block in advanced mode

In the first event-actions pair (Figure 8.1(a)), the event is composed of the tap block together

with an indication of the state . A state is indicated by four quarters of a circle, each of

which can be either on (orange) or o� (white). In this program, we will use the upper-le�

quarter to indicate whether the robot’s top light is o� or on. In Figure 8.1(a), this quarter is

colored white, meaning that the robot’s light is o�. Therefore, the meaning of the this pair is:

if the robot is tapped and the light is o�, then turn the light on.

For the second event-actions pair (Figure 8.1(b)), the quarter is colored orange, indicating that

the robot’s light is on. The meaning of pair is: if the robot is tapped and the light is on, then
turn it o�.

37

(a) Tap to turn the light on

(b) Tap to turn the light o�

Figure 8.1: Tap has a di�erent result depending on the state

If you look again at the state diagram, you will see that only half the job is done. When

turning the light on or o�, we also have to change the state of the robot from o� to on or

from on to o�. Therefore, we need to add a state action block to each pair. This block

changes the state as indicated by the quarters that are white or orange.

We can summarize the meaning of the program in Figure 8.1 as follows:

When the robot is tapped and the state is o�,

change the state to on and turn the top light on.

When the robot is tapped and the state is on,

change the state to o� and turn the top light o�.

Each event causes both an action on the light and a change of the state of the robot. The

actions depend on the current state of the robot.

How many states can the robot be in?

When used in an event state block or in the action state block, each quarter can be:

• White: the quarter is o� ;

• Orange: the quarter is on;

• Gray: the quarter is ignored.

For example, in , the upper-le� and lower-right quarters are on, the upper-right one is o�

and the lower-le� one is not taken into account, meaning that if is associated with an

event block, the event will occur if the state is either set to:

or

38

Since each of the four quarters can be either on or o�, there are 2 × 2 × 2 × 2 = 16 states:

(o�, o�, o�, o�), (o�, o�, o�, on), (o�, o�, on, o�),
. . .

(on, on, o�, on), (on, on, on, o�), (on, on, on, on).

Figure 8.2(a) displays these 16 possible states.

The current state of the robot is displayed in the four diagonal segments of the light

circle on the top of the robot. Figure 8.2(b) shows the robot in the state (on, on, on,
on).

Important information

When a program is run, the initial state is (o�, o�, o�, o�): .

Information

If you do not use all possible 16 states, but only 2 or 4, for example, you are free to

decide which quarters you use to represent your state. In addition, if you have two

di�erent things you want to encode, and each of them has two possible values, you

can use two quarters independently. That is why the ability to ignore a quarter is very

useful!

Trick

Get the mouse

Write a program to implement the behavior of a cat searching for a mouse: When the center

bu�on is touched, the robot turns counterclockwise (from right to le�), searching for a mouse.

If the robot detects a mouse with its rightmost sensor, it turns clockwise (from le� to right)

until the mouse is detected by its center sensor, at which point it stops (Figure 8.3).

Program file mouse.aesl

The following state diagram describes the behavior of the robot:

�
�

�
�

�
�

�
�

�
�

�
�search le� search right found- -

?

39

(a) All possible states of Thymio (b) The light circle indicates the state

Figure 8.2: The states of Thymio and their representation

1. When the center bu�on is touched, the robot enters the state search le� and moves

from right to le�.

2. When the robot is in state search le� and it detects the mouse in the rightmost sensor,

it changes to state search right and moves from le� to right.

3. When the robot is in state search right and it detects the mouse in the center sensor,

it changes to state found and stops.

The important point to notice is that when the mouse is detected by the center sensor, it stops

only if the robot is in state search right. Otherwise (if the mouse is detected by the center

sensor when the robot is in state search le�), nothing happens.

Let us now implement this behavior. We represent the state of the robot by the upper-le�

quarter of the state indicator. We choose white for the state search le� and orange for the

state search right. Since the program ends when the mouse is detected in state search right,
we don’t need to represent state found explicitly. Initially, all the quarters are o� (white).

The following event-actions pair implements the behavior in step 1:

When the center bu�on is touched, the state changes to search le� and the robot turns to

the le�.

The event-actions pair that implements step 2 is:

When the mouse is detected by the rightmost sensor while in state search le�, the state

changes to search right and the robot turns to the right.

40

Figure 8.3: The robot cat is looking for the mouse

The small square next to the rightmost sensor is set to black so that the event occurs only

when the rightmost sensor alone detects the mouse.

Step 3 is implemented by the following event-actions pair:

When the mouse is detected by the center sensor while in state search right, the robot stops.

You will have to experiment with the distance of the mouse to the robot. If it is too

close to the robot, the sensors on either side of the central sensor will also detect the

mouse, while the event requires that they not detect it.

Trick

Write a program that causes the robot to dance: it turns le� in place for two seconds and

then turns right in place for three seconds. These movements are repeated indefinitely.

Exercise 8.1

41

Modify the line-following program from Chapter 5 so that the robot turns le� when it

leaves the right-hand side of the line and turns right when it leaves the le�-hand side

of the line.

Exercise 8.2 (Di�icult)

42

Chapter 9

Counting (Advanced Mode)

In this chapter we show how states of the Thymio robot can be used to count numbers and

even perform simple arithmetic.

The design and implementation of the projects will not be presented in detail. We assume that

you have enough experience by now to develop them yourself. The source code of working

programs is included in the archive, but don’t look at them unless you really have di�iculties

solving a problem.

These projects use the clap event to change states and the default behaviour of the circle

lights to display the state. Feel free to change either of these behaviours.

By default, the current state of the robot is displayed in the circle lights on the top of

the robot. Figure 8.2(b) shows the state (on, on, on, on).

Important information

Odd and even

Program
Choose one of the quarters of the state. It will be o� (white) if the number of

claps is even and on (orange) if the number of claps is odd. Touching the center

bu�on will reset the count to even (since zero is an even number).

Program file count-to-two.aesl

Even and odd are terms from modulo 2 arithmetic, where we count from 0 (even) to 1 (odd)

and then back to 0. The term modulo is like the term remainder : if there have been 7 claps,

then dividing 7 by 2 gives 3 and remainder 1. We only keep the remainder 1.

Another term for the same concept is cyclic arithmetic. Instead of counting from 0 to 1 and

then from 1 to 2, we cycle back to the beginning: 0, 1, 0, 1,

These concepts are familiar from counting time: minutes and seconds are computed modulo

60 and hours are computed modulo 12 or 24. The second a�er 59 is not 60; instead, we cycle

around and start counting from 0 again. Similarly, the hour a�er 23 is not 24, but 0. If the

time is 23:00 and we agree to meet a�er 3 hours, the time set for the meeting is (23+3) modulo

24 = 26 modulo 24 = 02:00 in the morning.

43

Counting in unary

Modify the program to count modulo 4. There are four possible remainders, 0, 1,

2, 3. Choose three quarters, one each to represent the values 1, 2 and 3; the value

0 will be represented by se�ing all quarters to o�.

This method of representing numbers is called unary representation because di�erent elements

of a state represent di�erent numbers. We o�en use unary representation to keep track of the

count of some objects; for example,��� represents 6.

Program file count-to-four.aesl

How high can we count on the Thymio using unary representation?

Exercise 9.1

Counting in binary

We are familiar with based representation, in particular base 10 (decimal) representation. The

symbols 256 in base 10 don’t represent three unrelated objects. Instead, the 6 represents

the number of 1’s, the 5 represents the number of 10’s, and the 2 represents the number of

10×10=100’s. Adding these factors gives the number two hundred and fi�y-six. Using base 10

representation, we can write very large numbers in a compact representation. Furthermore,

arithmetic on large numbers is relatively easy using the methods we learned at school.

We use base 10 because we have 10 fingers so arithmetic in base 10 is easy to learn. Computers,

however, have two “fingers” (o� and on) so base 2 arithmetic is used in computation. Base 2

arithmetic looks strange at first; while we use the familiar symbols 0 and 1 also used in base

10, the rules for counting are cyclic at 2 instead of cyclic at 10:

0, 1, 10, 11, 100, 101, 110, 111, 1000, . . .

Given a base 2 number such as 1101, we compute its value from right to le� just as in base

10. The rightmost digit represents the number of 1’s, the next digit represents the number of

2’s, the third digit represents the number of 2×2=4’s, and the le�most digit represents the

numbers of 2×2×2=8’s. Therefore, 1101 represents 1+0+4+8, which is thirteen.

Program
Modify the program for counting modulo 4 to use binary representation.

Program file count-to-four-binary.aesl

We need only two quarters of the state to represent the numbers 0, 1, 2, 3 in base 2. Let the

upper-right quarter represent the number of 1’s—o� (white) for none and on (orange) for

44

one—and let the upper-le� quarter represent the number of 2’s. For example, represents

the number 1 because the upper-le� quarter is white and the upper-right quarter is orange.

If both quarters are white, the state represents 0, and if both quarters are orange, the state

represents 3. The number 2 is represented by , where the upper-le� quarter is orange and

the upper-right quarter is white.

There are four transitions 0→ 1, 1→ 2, 2→ 3, 3→ 0, so four event-actions pairs are needed,

in addition to a pair to reset the program when the center bu�on is touched.

The two bo�om quarters are not used, so they are le� gray and are ignored by the

program.

Ignore unused quarters of the state

Extend the program so that it counts modulo 8. The lower-le� quarter will represent

the number of 4’s.

Exercise 9.2

How high can we count on the Thymio using binary representation?

Exercise 9.3

Adding and subtracting

Writing the program to count to 8 is quite tedious because you had to program 8 event-actions

pairs, one for each transition from n to n+ 1 (modulo 8). Of course, that is not how we count

in a based representation; instead, we have methods for performing addition by adding the

digits in each place and carrying to the next place. In base 10 representation:

387

+426

813

and similarly in base 2 notation:

0011

+1011

1110

45

When adding 1 to 1, instead of 2, we get 10. The 0 is wri�en in the same column and we carry

the 1 to the next column to the le�. The example above shows the addition of 3 (=0011) and

11 (=1011) to obtain 14 (=1110).

Program
Write a program that starts with a representation of 0. Each clap adds 1 to the

number. The addition is modulo 16, so adding 1 to 15 results in 0.

Program file addition.aesl

Guidance

• Starting the in upper-right corner and continuing counter-clockwise, the quarters will

represent the number of 1’, 2’s, 4’s and 8’s in the number. Thus, the lower-right quarter

represents the number of 8’s.

• If the upper-right quarter representing the number of 1’s shows 0 (white), simply change

it to 1 (orange). Do this regardless of what the other quarters show.

• If the upper-right quarter representing the number of 1’s shows 1 (orange), change it to

0 (white) and then carry the 1. There will be three event-actions pairs, depending on

the location of the next quarter showing 0 (white).

• If all quarters show 1 (orange), the value of 15 is represented. Adding 1 to 15 modulo 16

results in 0, represented by all quarters showing 0 (white).

Modify the program so that it starts with the value 15 and subtracts one at each clap

down to zero, and then cyclically back to 15.

Exercise 9.4

Place a sequence of short segments of black tape on a light surface. Write a program

that causes the Thymio to move forward and stop at the fourth tape.

Exercise 9.5

This exercise is not easy: the strips of tape have to be su�iciently wide so that the robot

detects them, but not so wide that more than one event occurs per strip. You will also have to

experiment with the speed of the robot.

46

Chapter 10

Accelerometers (Advanced Mode)

We are all familiar with acceleration, the rate of change of speed, for example, when a car

speeds up or slows down. An accelerometer is a device for measuring acceleration. An airbag

in a car uses an accelerometer to detect if the speed of the car is decreasing “too fast” because

the car has crashed; if so, the airbag is inflated.

The Thymio robot has three accelerometers, one for each direction: forward / backwards, le�

/ right, and up / down.

It is hard to achieve measurable accelerations, except for the case of gravity which is an

acceleration towards the center of the earth. In this project, we use the accelerometers to

measure the angle at which the robot is tilted.

There are two events that can detect the angle of the robot relative to the earth:

• : An event occurs when the le� / right angle of the robot is within the white angle

segment in the half-circle. (The technical term is roll.)

• : An event occurs when the forward / backwards angle of the robot is within the

white angle segment of the half-circle. (The technical term is pitch.)

Initially, these blocks have the white segment pointing upwards from the top of the image

of the Thymio, so that an event occurs when the robot is placed on a level surface such as a

table or the floor. By dragging the segment with the mouse, you can select other angles; for

example, the following block causes an event to occur when the robot is tilted le� roughly

half-way from vertical to horizontal:

Program
Hold the robot so that it is facing you and tilt it le� and right. The top light of

the robot will display a di�erent color for each range of the angle of the tilt.

Program file measure-angles.aesl

Construct a set of event-actions pairs where each event is a le�-right accelerometer event

and the corresponding action changes the top color:

47

Make a list relating colors to angles so that you can translate any color to a specific angle.

The quarters of the event-state block are gray so the event causes the action in any state.

Can two events use the same white segment of angles?

How many events with di�erent angles and you can construct?

Exercise 10.1

Write a program that causes the robot to move forwards when a bu�on is touched and

to stop when it starts to tip forwards.

To avoid damaging the robot, test the program by having the robot fall o� a magazine

or two placed on a table!

Program file acc-stop.aesl

Exercise 10.2

48

Part II

Parsons Puzzles

49

Chapter 11

Parsons Puzzles for VPL

What are Parsons puzzles?

Parsons puzzles are a form of exercise that can help students learn how to program.
1

A

Parsons puzzle consists of a specification of a program together with a set of statements in

a programming language. Your task is to place the statements in the correct order so that

they form a program that implements what is required. A Parsons puzzle may also include

distractors, which are incorrect statements or extra statements that are not needed in the

solution. The advantage of Parsons puzzles is that all the statements needed for the solution

are visible to the student and have the correct syntax.

In VPL, there is almost no meaning to the order of the set of event-actions pairs in a program.

Therefore, the puzzles will be programs where one or more pairs are missing the event block,

the action block or both. To the right of each event-actions pair will appear two or more

blocks; select the correct block and draw an arrow from it to the empty block.

Example When the forwards bu�on is touched, the top green light is turned on.

→

?

The puzzles

1. When the right bu�on is touched the bo�om red light is turned on.

→

2. When the right bu�on is touched the top red light is turned on.

→

1

Parsons, D. and Haden, P. Parson’s programming puzzles: A fun and e�ective learning tool for first program-

ming courses. Proceedings of the 8th Australian Conference on Computing Education, Darlinghurst, Australia, 2006,

157–163.

50

3. When the le� bu�on is touched the bo�om green light is turned on.

→

4. When the le� bu�on or the right bu�on is touched, the top green light is turned on.

→

→

5. When both the le� bu�on and the right bu�on are touched, the top red light is turned

on. Select one of the following two programs:

→ or →

→

6. If an object is detected only by the le�most sensor, turn le�.

→

7. Stop the robot when the end of the table has been reached.

→

8. When the robot detects a wall, the top red light is turned on.

→

51

9. When the robot hits the wall, the motors are turned o�.

→

10. The robot turns to the le� if there is an object in front of the center sensor.

→

11. The robot turns to the right if there is no object in front of the center sensor.

→

12. The motors are turned o� when the le� bu�on is touched or if the robot is tapped.

→

→

13. When the forwards bu�on is touched, the robot moves forward for three seconds and

then moves backwards.

→

→

→

52

14. The robot moves towards an object that is detected by its le�, right or center sensor.

→

→

→

15. The robot is following a line on the floor. It turns le� if it no longer detects the line in

its right sensor and it turns right if it no longer detects the line in its le� sensor,

→

→

16. The robot counts 0,1,2,3,0,1,2,3, . . . , whenever it detects a clap event.

→

→

→

→

53

17. When the center bu�on is touched, the right front and le� front circle lights turn on

and o� alternately at one-second intervals.

→

→

→

18. The bo�om light of the robot turns green when it detects an object far away from it

and the top light of the robot turns red when it detects an object close to it.

→

→

19. Tilt the robot on its le� side; the top light turns blue and the bo�om light is turned o�.

Tilt the robot on its back; the top light is turned o� and the bo�om light turns yellow.

→

→

54

Part III

Projects

55

Chapter 12

Braitenberg Creatures

What are Braitenberg creatures?

Valentino Braitenberg was a neuroscientist who wrote a book describing the design of virtual

vehicles which exhibited surprisingly complex behavior.
1

Braitenberg’s vehicles have been

widely used in educational robotics. Researchers at the MIT Media Lab created hardware

implementations of the vehicles called Braitenberg creatures.2 The vehicles were build from

programmable bricks that were the forerunner of the LEGO Mindstorms robotics kits.

This chapter describes an implementation of most of the Braitenberg creatures from the

MIT report adapted for the Thymio robot with VPL. The MIT hardware used light and touch

sensors, while the Thymio robot relies primarily on infrared proximity sensors. To enable

comparison with the MIT report, the names of the creatures used there have been retained,

even though they may not be appropriate for the Thymio implementations. The order of

presentation from the report has also been retained, although this does not correspond to the

di�iculty of implementation in VPL.

In the descriptions, the phrase “detects an object” is used. Unless otherwise indicated, this

means that an object is detected by the front center sensor. The easiest way to do this is to

place your hand so that it is detected by a sensor.

The VPL source code is available in the archive. The file names are the same as the names of

the creatures with the extension aesl. For some creatures, additional behaviors are suggested

as exercises and their implementations also appear in the archive.

Specification of the creatures

Timid When the robot does not detect an object, it moves forwards. When it detects an

object, it stops.

Indecisive When the robot does not detect an object, it moves forwards. When it detects an

object, it moves backwards. At just the right distance, the robot will oscillate, that is, it

will move forwards and backwards in quick succession.

Paranoid When the robot detects an object, it moves forwards. When it does not detect an

object, it turns to the le�.

1

V. Braitenberg. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1984).

2

David W. Hogg, Fred Martin, Mitchel Resnick. Braitenberg Creatures. MIT Media Laboratory, E&L Memo 13,

1991. h�p://cosmo.nyu.edu/hogg/lego/braitenberg_vehicles.pdf.

56

http://en.wikipedia.org/wiki/Valentino_Braitenberg
http://cosmo.nyu.edu/hogg/lego/braitenberg_vehicles.pdf

Exercise (Paranoid1) When an object is detected by the center sensor of the robot, it

moves forwards. When an object is detected by the right sensor (but not by the center

sensor), the robot turns right. When an object is detected by the le� sensor (but not by

the center sensor), the robot turns le�.

Exercise (Paranoid2, advanced mode) As in Paranoid, but the robot alternates the

direction of its turn every second. Hint: Use states to keep track of the direction and a

timer to change states.

Dogged When the robot detects an object in front, it moves backwards. When the robot

detects an object in back, it moves forwards.

Exercise (Dogged1) As in Dogged, but when an object is not detected, the robot

stops.

Insecure If an object is not detected by the le� sensor, turn the robot’s right motor on and

the le� motor o�. If an object is detected by the le� sensor, turn the right motor o�

and the le� motor on. The robot should follow a wall placed to its le�. Hint: See the

note about turning the robot in Appendix B.

Driven If an object is detected by the le� sensor, the robot turns the right motor on and the

le� motor o�. If an object is detected by the right sensor, the robot turns the le� motor

on and the right motor o�. The robot should approach the object in a zigzag.

Persistent (advanced mode) The robot moves forwards until it detects an object. It then

moves backwards for one second and reverses to move forwards again.

A�ractive and repulsive When an object approaches the robot from behind, the robot runs

away until it is out of range.

Consistent (advanced mode) The robot cycles through four states when it is tapped: mov-

ing forwards, turning le�, turning right, moving backwards.

Frantic (advanced mode) The top light flashes red. Hint: You can use the sensor event

block with all sensors gray as explained in Appendix B.

Exercise (Franctic1, advanced mode) Implement the flashing light using the bu�on

event block instead of the sensor event block. Is there a di�erence in the behavior of

the robot? If so, what causes it?

Observant (advanced mode) The robot turns the top light green when the right sensor

detects an object. The robot turns the top light red when the le� sensor detects an

object. Once a light is turned on, it waits three seconds before turning o�; during this

period, the light does not change.

57

Chapter 13

The Rabbit and the Fox

This chapter contains the specification of a large project (my program uses 7 event-actions

pairs, each with 2–3 actions). You should have enough experience by now designing and

implementing VPL programs in order to write it yourself. We will give the specification of

the behavior of the robot as a list of tasks and suggest that you develop the program by

implementing each task in turn.

Story1
The robot is a rabbit, walking in the forest. A fox chases the the rabbit to catch it from

behind. The rabbit senses the fox, turns around and catches the fox.

Specification

For each event, we specify a top color to be displayed when the event occurs.

1. Touch the forwards bu�on: the robot moves forwards (blue).

2. Touch the backwards bu�on: the robot stops (o�).

3. If the robot detects the edge of the table it stops (o�).

4. If the le� rear sensor detects an object, the robot quickly turns le� (counterclockwise)

until the object is detected by the front center sensor (red).

5. If the right rear sensor detects an object, the robot quickly turns right (clockwise) until

the object is detected by the front center sensor (green).

6. When the object is detected by the front center sensor, the robot moves forward quickly

for one second (yellow) and then stops (o�).

Program file rabbit-fox.aesl

1

The story is loosely inspired by a joke well-known to PhD students.

58

http://www.cs.hmc.edu/~fleck/parable.html

Chapter 14

Reading Barcodes

Barcodes are universally used in supermarkets and elsewhere to identify objects. The identi-

fication is a number or a sequence of symbols that is di�erent for each type of object. The

identification is used to access a database containing information about an object, such as its

price. Let us build a barcode reader from the Thymio robot.

Specification

1. Carefully measure the distance between two front horizontal sensors and the width of

a single sensor. Using a piece of flexible cardboard, black tape and strips of aluminum

foil, construct an object with various arrangements of the strips of foil:

2. Each configuration of the three center horizontal sensors will represent a di�erent code.

(How many codes can there be?) For some or all of these codes, implement event-actions

pairs that display a top color depending on the code identified.

Guidance:

We will only use the three center sensors, so the squares for the outer sensors will be gray. For

the center sensors, squares where the reflecting foil must appear in the code are white, while

squares where the foil must not appear are black. For example, the following event-actions

pair displays yellow for the code on-off-on:

The program in the archive identifies barcodes with foil opposite any two of the three center

sensors, as well as the code with no foil.

Program file barcode.aesl

59

Chapter 15

Sweeping the Floor

Are you tired of cleaning your house? Now there are robotic vacuum cleaners that can do the

job for you! The robot systematically moves over the floor of your apartment, navigating

around furniture and other obstacles, while it vacuums the dirt.

Specification

When the forwards bu�on is touched, the Thymio robot travels from one side of the room to

the opposite side, turns, moves a few steps and then returns to the first side:

-

?�

Guidance

There are three subtasks that the robot must implement: (1) move the length of the room (to

the right or to the le�), (2) turn right, (3) move a few steps down. The subtasks are performed

in the following order:

�� ���� ���� ���� ���� ��move long turn right move short turn right move long- - - -

The robot will use states to keep track of which subtask it is performing. The direction and

amount of movement for each subtask is determined by the speeds of the le� and right motors,

and by the length of time that the motors run. Therefore, each subtask will be implemented by

an event-actions pair, where the event is the expiration of the timer for the previous subtask

and the actions are to set the following parameters for the next subtask: (1) the state; (2) the

le� and right motor speeds; (3) the timer period. The program is initiated by a bu�on event.

You will have to experiment with the speeds and the timer period to cause the robot to follow

the required rectangular path.

Program file sweep.aesl

For fun, add colors to the top lights: green for straight, yellow for turn and red for stop.

Program file sweep1.aesl

60

Chapter 16

Measuring Speed

Specification

Measure the speed of the Thymio robot for di�erent se�ings of the motors. Place a strip of

black tape on a light-colored surface as you did for the line-following program (Chapter 5).

Put the robot just before the one end of the tape. Implement the following behavior:

• The robot starts moving forward when the center bu�on is touched.

• When the start of the tape is detected by the ground sensors, start a one-second timer.

• When the timer expires, change the top color and reset the timer to one second.

• When the end of the tape is detected, turn the motors o�.

Run the program and count the number of times the color changes. This is the number of

seconds that the robot took to move over the tape. Divide the length of the tape by the

number of seconds to get the speed. For example, if the length of the tape is 30 centimeters

and the color changes 6 times, the speed of the robot is 30/6=5 centimeters per second.

Experiment with di�erent motor se�ings and lengths of the tape.

Guidance

Write down a list of colors, say, 1=red, 2=blue, 3=green, 4=yellow, etc. Use the list to translate

a color of the robot to a number of seconds.

Use states to keep track of the current and next colors. For example, in state 3, the color is

green; when the timer expires and the state is 3, change the state to 4, change the color to

yellow and reset the timer. There are three actions for each timer event.

Program file measure-speed.aesl

61

Chapter 17

Catch the Speeders

Specification

Help the police catch drivers who travel at high speed. Measure the speed by detecting how

far the car travels in a fixed period of time.

The robot detects an object moving from its le� side to its right side in front of the sensors.

Turn the top light a di�erent color to indicate how far the object has moved during one second

from when it is first detected by the le�most sensor.

Guidance

• In the initial state, when the le�most sensor detects the object, start a one-second timer.

• When the timer expires, change the state to a new state; let us call it the measure state.

• Construct four event-actions pairs, one with an event for each of the other sensors; the

event will only occur in the measure state. When a sensor detects the object, it turns

the top light on to a color associated with that sensor.

• Ensure that an event-actions pair is run only when the object is detected by the corre-

sponding sensor and not by the neighboring sensors.

Program file speeders.aesl

62

Chapter 18

Finite Automata

A finite automaton (FA)1
is an abstract machine that is capable of performing computations. FA

are extremely important in many areas of computer science.
2

Consider finite strings composed

of two symbols a and b:

aabbbababbaba

The task is to read such strings and to decide if the number of a’s is odd or even. A FA to solve

this problem has two states: it is in state 0 if the number of a’s read so far is even and it is in

state 1 if the number of a’s read so far is odd. The FA is represented in the following diagram.

It consists of two states, 0 and 1, and transitions from each state that are labeled a and b.

��
��

��
��

-
0 1-

a

� a

�
�-
b �
�� b

When the FA is in a state and reads a symbol from the string, it changes its state as indicated

by the transitions. If the number of a’s read so far is even (state 0) and an a is read, the FA

takes the transition to state 1, and conversely if the number of a’s read so far is odd (state 1),

the transition to state 0 is taken. If a b is read, the state does not change, because the number

of a’s read does not change.

The FA starts in state 0 since the initial number of a’s read is 0 which is even. This initial state

is indicated by the small arrow.

Specification3

Print out the file fa-path-alternate.pdf containing the following image:
4

1

The plural is finite automata and its acronym is also FA.

2

FA are formally defined and developed in textbooks such as: J.E. Hopcro�, R. Motwani, J.D. Ullman. Introduction
to Automata Theory, Languages, and Computation, Pearson, 2013.

3

The specification and implementation were inspired by the light-painting project.

4

The path files can be found in the directory images in this archive.

63

https://www.thymio.org/en:barcodelightpainting

The shaded line is used to ensure that the robot moves forward and does not move o� to the

right or the le�. The string is encoded by squares, where a is represented by a black square

and b is represented by a white square. This image represents the string babababab.

Place the robot at the le� of the image before the first square, facing right, with the right

ground sensor in the middle of the shaded line. The behavior of the robot is as follows:

1. Touch the forward bu�on to start the robot. The top light is turned o�, the motors are

started, the state is initialized (see below) and a timer is started.

2. Touch the center bu�on to stop the robot.

3. The robot moves to the right. It uses the right ground sensor to detect if it starts to turn

le� or right. If the robot turns right, the sensor will detect a lower (blacker) light level

and the robot turns le�; if the robot turns le�, the sensor will detect a higher (whiter)

light level and the robot turns right.

4. When the timer expires, the value of the le� ground sensor is checked. If the robot is

over a white square (reading a b), the top light is turned red and the timer reset. If the

robot is over a black square (reading a a), the top light is turned green, the timer reset

and the state changed from even to odd or from odd to even.

Guidance

The robot will use three of the four quarters in the state events and actions:

• The upper-le� quarter is used to indicate if the program is running or not.

• The upper-right quarter is used to indicate if the color (black or white) of a square

should be detected.

• The lower-le� quarter keeps track of whether the number of a’s read is even or odd.

Here is an example of one event-actions pair:

if the le� sensor detects li�le light (a black square) and
the program is running and the color of the square should be detected and
an even number of a’s has been read so far, then

turn on the top red light

change the state: the number of a’s read is odd and
the color of the square should not be detected

reset the timer

Program file fa.aesl

64

You will have to experiment with the speed of the motors and the duration of the timers to

reliably detect the black and white squares.

Exercise Print out the file fa-path-blank.pdf which contains an image where all the squares

are white. Use a marker pen to blacken a di�erent set of squares and test the program. In

particular, check if the program works where two or more adjacent squares are blackened,

representing a string with more than one consecutive a.

Exercise Modify the program so that it detects the remainder 0, 1 or 2 of the number of a’s

read divided by 3.

Modifying the layout

This section explains how to modify the path (the shaded line and the squares), but

you have to be familiar with the LAT
E
X document processing system to do so.

Warning!

The files fa-path-*.tex in the archive contain the LAT
E
X source code.

The following instruction draws a shaded line 2 cm wide by 23 cm long:
5

\shade[left color=black,right color=white] (0,0) rectangle +(2,23);

The black and white squares are drawn using the following instructions:

\foreach \a in {1, 3, 5, 7}
\filldraw[color=black] (\offset,\height*\a) rectangle +(\width,\height);

\foreach \a in {0, 2, 4, 6, 8}
\draw (\offset,\height*\a) rectangle +(\width,\height);

You can change the list of numbers in the foreach instructions to specify which squares are

black and which are white.

The filldraw and draw instructions use length parameters that can be easily changed:

\setlength{\height}{2.4cm} % Height of a square
\setlength{\width}{3cm} % Width of a square
\setlength{\offset}{2.3cm} % Offset of the squares from the shaded line

Format the file with pdflatex and print the page using so�ware such as Adobe Reader or

SumatraPDF. The image is created in portrait layout, but you can fix the page to a table in any

orientation. Two or more images can be taped to a table in sequence to obtain a representation

of a longer string.

5

These instructions are from the TikZ graphics library.

65

Chapter 19

Multiple Sensor Thresholds

As explained in Appendix D, in advanced mode sensors events can be specified in three

di�erent ways: an event occurs when the reflected light is below a threshold (black), an event

occurs when the reflected light is above a threshold (white), and an event occurs when the

reflected light falls between two thresholds (dark gray):

Specification

Construct a program that causes the robot to approach an object, starting at a high speed,

slowing down as it gets closer, and finally stopping when the robot is very close to the object.

Guidance

• Use three event-actions pairs, one with each type of sensor event.

• Carefully adjust the sliders (see Appendix D) so that the high value of one threshold is

the same as the low value of the next threshold.

• Add a color block to each pair so that you can see the robot’s speed se�ing.

• Use reflector tape to extend the range of the sensors as explained in Appendix B.

Program file slow.aesl

Specification

The line following program in Chapter 5 used two sensors to decide if the robot is moving o�

the line to the le� or to the right. Implement a line following algorithm that uses one sensor.

Guidance

The robot will follow the edge of the line, not its center. The ground sensors receive reflected

light from a relatively wide area so the decision can be made using multiple thresholds. If the

right sensor is used to follow the right edge of a (dark) line:

• If the sensor is to the le� of the edge, li�le light will sensed.

66

• If the sensor is to the right of the edge, a lot of light will be sensed.

• If the sensor is over the edge, the amount of light sensed will be midway between the

two extreme values.

The three cases are shown in the following diagram:

Program file line-one.aesl

67

Chapter 20

Multiple Thymios

You can run two or more Thymio robots at the same time.

Specification

Place two robots T1 and T2 facing each other. T1 chases T2; when T1 detects that it is close to

T2 it will stop. If T2 detects that T1 is close to it, T2 retreats until it no longer detects T1.

Guidance

• The programs for T1 and T2 have two event-action pairs: one whose event is the

detection of an object by the center horizontal sensor, and another whose event is the

non-detection of an object. However, the actions for T1 and T2 are di�erent.

• Connect two Thymios T1 and T2 to the computer and turn them on. Run two copies of

VPL. In the target-selection window (Figure 1.2), both T1 and T2 should appear; select

T1 in one copy of VPL and T2 in the other. Open and run program chase in T1 and

program retreat in T2.

Experiments

• What happens if you exchange the programs: T1 runs retreat and T2 runs chase?

Explain.

• In advanced mode, experiment with di�erent se�ings of the sensor thresholds.

Program file chase.aesl, retreat.aesl

Multiple Thymio robots can send messages to each other. This capability is supported

in the AESL language and Studio environment.

Communications between robots

68

Part IV

From visual to textual programming

69

Chapter 21

Learning AESL from VPL programs

Congratulations! You are an expert in programming the Thymio robot using the Visual
Programming Environment (VPL). Now you want to move on and use the professional Studio
Programming Environment (Figure 21.1) and its textual programming language, the Aseba
Event Scripting Language (AESL).

Figure 21.1: Aseba Studio environment

VPL translates graphical programs (event-actions pairs) into a textual AESL program, which

is displayed in the right-hand panel of the VPL window (panel 6 in Figure 1.3 on page 13).

This tutorial uses VPL programs from the previous chapters of this tutorial and explains the

corresponding AESL program. You will be able to use your understanding of the VPL program

to learn the fundamental concepts of AESL programming.

Programming in Aseba Studio is also based upon the concepts of events and actions. Since

VPL programs are translated into AESL programs, everything you learned in this tutorial is

supported in Studio, but now you have the flexibility of a full programming language with

variables, expressions, and control statements.

When you are working with Aseba Studio, you can open VPL by clicking on the bu�on Launch
VPL in the Tools tab at the bo�om le� of the window. You can import VPL programs into

Aseba Studio simply by opening its file.

Sections marked
∗

present AESL programming concepts that go beyond what is found in the

VPL projects. They can be skipped when you first read this tutorial.

70

Documentation

To learn about Aseba Studio and AESL, go to the Programming Thymio page at

h�ps://www.thymio.org/en:asebausermanual. You can find documentation of:

• The Studio programming environment.

• The AESL programming language.

• The interface to the Thymio robot. (There is a reference card for the interface).

• The native functions library supported in AESL.

There is also an archive describing interesting projects in AESL, together with the source of

proposed solutions.

The Thymio Interface

Here is the program whistles.aesl from Chapter 6 together with part of the corresponding

AESL program:

onevent tap
call leds.top(32,0,32)

onevent mic
call leds.bottom.left(0,32,32)
call leds.bottom.right(0,32,32)

Event handlers

When a tap event occurs, the top light is turned on with the color called magenta, and when

the clap event occurs, the bo�om light is turned on with the color called cyan. Corresponding

to the event-actions pairs in VPL are event handlers, which are introduced by the keyword

onevent (read this as two words: “on event”). You can find a list of events in the table at the

bo�om of the documentation for the Thymio programming interface.

The lines following onevent form the body of the event handler and correspond to the action

blocks to the right of an event block in VPL.

When a tap event occurs, the interface function leds.top is called. The function takes three

parameters, which specify the intensities of the red, green and blue components of the LED.

Their values can range from 0 (o�) to 32 (full). The combination of red and blue gives magenta.

71

https://www.thymio.org/en:asebausermanual

The VPL clap event corresponds to the mic event (short for microphone). When the event

occurs, the bo�om LEDs are turned on. In VPL, one action block turns on both LEDs to the

same color, whereas in AESL, the le� and right LEDs can be set separately. Here, we set both

of them to full intensity of green and blue, giving cyan.

Assigning a value to a variable
Look again at the AESL program in the VPL window. The first two lines are:

setup threshold for detecting claps
mic.threshold = 250

A line beginning with # is called a comment. Comments do not a�ect the running of a program;

they are used to give information to the reader of the program. Here, the comment notes that

the clap event occurs when the intensity of the sound is greater than a threshold. The second

line of the program specifies that the event occurs when then intensity of the sound (which

can be in the range 0–255) is greater than 250.

In VPL, the threshold is built-in and cannot be changed, but in a textual program you can

change it using an assignment statement :

mic.threshold = 180

Its meaning is that the value on the right-hand side of the = symbol is copied to the variable
on the le�-hand side. The variable mic.threshold is predefined for the Thymio robot.

Initialization of the Thymio

At the beginning of each program, VPL automatically inserts a sequence of statements that

turns o� all the LEDs and the sound:

reset outputs
call sound.system(-1)
call leds.top(0,0,0)
call leds.bottom.left(0,0,0)
call leds.bottom.right(0,0,0)
call leds.circle(0,0,0,0,0,0,0,0)

This initialization is not visible in the VPL program. In a textual program, it is recommended

that you include these statements, but it is not required.

72

Alternatives

The program colors-multiple.aesl from Chapter 2 changes the colors of the top and bo�om

LEDs when the bu�ons are touched:

onevent buttons
when button.forward == 1 do

call leds.top(32,0,0)
end
when button.backward == 1 do

call leds.top(0,0,32)
end
when button.right == 1 do

call leds.bottom.left(0,32,0)
call leds.bottom.right(0,32,0)

end
when button.left == 1 do

call leds.bottom.left(32,32,0)
call leds.bottom.right(32,32,0)

end
when button.center == 1 do

call leds.top(0,0,0)
call leds.bottom.left(7,0,0)
call leds.bottom.right(7,0,0)

end

In the AESL program, a single event occurs when any of the five bu�ons is touched. The action

of the event handler onevent buttons depends on which bu�on is touched, so we check the

value of the bu�on variables in order to select an action. The statements:

when button.forward == 1 do
call leds.top(32,0,0)

end

mean: when the value of the variable button.forward changes from some other value (here,

0) to 1, then perform the actions wri�en on the lines between the keyword do and the keyword

end. There are five button variables, one for each bu�on. The value of a bu�on variable

is 1 if the bu�on is touched and 0 if the bu�on is released. In the program, there are five

when-statements, one for each bu�on. One or two actions are run if the expression in a

when-statement becomes true.

One event or multiple events∗

The Thymio interface includes separate events for each bu�on, in addition to the buttons
event that occurs if any bu�on is touched or released. We could implement the program as

follows, using multiple events without when-statements and bu�on variables:

73

onevent button.forward
call leds.top(32,0,0)

onevent button.backward
call leds.top(0,0,32)

onevent button.right
call leds.bottom.left(0,32,0)
call leds.bottom.right(0,32,0)

onevent button.left
call leds.bottom.left(32,32,0)
call leds.bottom.right(32,32,0)

onevent button.center
call leds.top(0,0,0)
call leds.bottom.left(1,0,0)
call leds.bottom.right(1,0,0)

The advantage of using separate events is that the program is easier to read and understand,

but there are cases where you need to use the event buttons: (a) to distinguish between

touching and releasing a bu�on, and (b) to identify touching two bu�ons at once:

onevent buttons
Turn the top LEDs on when the forward button is released
when button.forward == 0 do

call leds.top(32,0,0)
end

Turn the bottom LEDs on when
both the left and the right buttons are touched
when button.left == 1 and button.right == 1 do

call leds.bottom.left(0,32,0)
call leds.bottom.right(0,32,0)

end

Another di�erence is that the individual events occur when a bu�on is touched or released,

whereas the common event buttons occurs with a frequency of 20 Hz a�er updating the

array of bu�on variables (see page 76 for an explanation of these concepts).

if-statements
AESL supports two alternative statements:

when v == 1 do ... statements ... end

if v == 1 then ... statements ... end

that have di�erent meanings:

when the value of v becomes 1, run the statements

if the value of v is 1, run the statements

74

when-statements are commonly used with variables representing events, because we usually

want to run an event handler when something changes, not just because the value of a variable

has a certain value. We could write a buttons event handler using an if-statement:

onevent buttons
if button.forward == 1 then

... statements ...
end

However, if we touch the forward bu�on for a long period of time, the statements would

be run several times. If the statements change the color of the LEDs, it wouldn’t make a

di�erence, but there are cases where it does ma�er and a when-statement is needed.

An if-statement is appropriate when we are interested the values of variables and not in their

changes. The following statements set the value of the variable max to the maximum value

returned by the two rear sensors:

if prox.horizontal[5] > prox.horizontal[6] then
max = prox.horizontal[5]

else
max = prox.horizontal[6]

end

Additional examples of if-statements appear in the next section and in Figure 21.3.

75

Arrays

The program likes.aesl in Chapter 4 of the VPL tutorial causes the robot to follow your

hand as you move it from side to side near the forward horizontal proximity sensors. When an

object is not detected, the robot stops; when an object is detected in front of the center sensor,

the robot moves forward; when an object is detected in front of the le�most or rightmost

sensor, the robot turns in that direction.

onevent prox
when prox.horizontal[2] < 1000 do

motor.left.target = 0
motor.right.target = 0

end
when prox.horizontal[2] > 2000 do

motor.left.target = 300
motor.right.target = 300

end
when prox.horizontal[0] > 2000 do

motor.left.target = -300
motor.right.target = 300

end
when prox.horizontal[4] > 2000 do

motor.left.target = 300
motor.right.target = -300

end

Figure 21.2: The likes program in VPL and AESL

The AESL program (Figure 21.2) is structured as an event handler with several when-statements.

The values of the motor variables motor.left.target and motor.right.target are set to

values corresponding to the positions of the sliders in the motor blocks. In VPL, the sliders

change the values of the motor variables in increments of 50, but in AESL you can set them

to any values in the range −500 to 500.

The event is called prox. Unlike the bu�on events, which occur when something “hap-

pens,” this event occurs 10 times every second. Before the event occurs, the values of the

prox.horizontal variables are set to values that depend on what the sensors are detecting.

See the documentation of the Thymio programming interface for details.
1

1

The unit for frequency, the number of times something happens per second, is called the hertz, abbreviated

76

Arrays as multiple variables

The Thymio robot has 7 horizontal proximity sensors, 5 in front and 2 in the back. To read the

values detected by the sensors, it would be possible to define 7 di�erent variables:

prox.horizontal.front.0
prox.horizontal.front.1
prox.horizontal.front.2
prox.horizontal.front.3
prox.horizontal.front.4
prox.horizontal.back.0
prox.horizontal.back.1

Instead, AESL enables you to define an array, which is a sequence of variables all with the

same name. The di�erent variables in the sequence are identified with a number. The array

for the horizontal proximity sensors is predefined and is called prox.horizontal:

prox.horizontal

0 1 2 3 4 5 6

The first 5 components are for the front sensors from le� to right, while the last two com-

ponents are for the back sensors from le� to right. If you don’t remember the assignment

of numbers to sensors, you can always look it up in the the documentation for the Thymio

programming interface, even be�er, on the diagram in the reference card.

To access a specific component in an array, write its sequence number in square brackets a�er

the name of the array variable. This number is called an index into the array. The following

statement specifies that the motor variables will be set to 300 when the value of the front
center sensor (index 2) becomes greater than 2000:

when prox.horizontal[2] > 2000 do
motor.left.target = 300
motor.right.target = 300

end

Later, we will see that array variables can have their values set in an assignment statement:

timer.period[0] = 1979

for-loops and index variables∗

A natural generalization of arrays is to use a variable instead of a constant for the index.
2

The

program cats.aesl contains the following statements:

Hz. The interface document specifies that the prox event occurs with frequency 10 Hz.

2

This is not used in translations of VPL programs into AESL, except in an advanced construct for constructing

sounds; therefore, the simple example here is taken from the AESL projects.

77

var i

for i in 0:4 do
if prox.horizontal[i] > DETECTION then

state = 2
end

end

Previously, we only used variables that are built into the Thymio interface; here, the first line

declares a new variable called i. The next statement is a for-statement whose meaning is:

• Assign the values 0, 1, 2, 3, 4 in turn to the variable i;

• For each assignment, run the statements between do and end.

Here, there is a single if-statement between do and end. It checks the value of the horizontal

proximity sensors and sets the value 2 in the variable state if the value read from a sensor is

greater than the constant DETECTION.
3

The variable i receives the values 0, 1, 2, 3, 4 in turn, so each time the if-statement is run,

prox.horizontal[i] reads the value of each front sensor from le� to right. The result of the

for-statement is thus to set the value of the variable state to 2 if any of the front sensors

detects an object.

Declaring an array

An array variable is declared by giving its size in brackets following the array name. The size

can also be specified by providing an initial value:
4

var state[4] # An array with four components
var state[] = [0,0,0,0] # An array with four components

In the translation of the VPL program, both the size and the initial value are given. This is

correct as long as the number of values is the same as the size:

var state[4] = [0,0,0,0] # OK, but redundant

3

See the documentation of the Aseba Studio environment for instructions on how to define constants.

4

A comment need not start at the beginning of a line. Every character from the symbol # to the end of the line

is considered to be a comment and is ignored by the computer.

78

Timers

Chapter 7 introduced timers. The program shy.aesl causes the robot to turn le� when the

front center sensor detects your hand; two seconds later, it turns right:

onevent prox
when prox.horizontal[2] > 2000 do

motor.left.target = -150
motor.right.target = 100
timer.period[0] = 2000

end

onevent timer0
timer.period[0] = 0
motor.left.target = 200
motor.right.target = 0

There are two timers in the Thymio robot. You set the duration of a timer by assigning a value

to components 0 or 1 of the array timer.period. The value is in milliseconds, thousandths of

a second. To set a duration of 2 seconds in timer 0, the value 2000 (milliseconds) should be

assigned to timer.period[0].

There are two events, timer0 and timer1, one for each timer. When the duration has passed

(we say that the timer has expired), the timer event occurs. In the handler for the event

timer0, we set the timer duration to 0 so it won’t occur again and change the motor se�ings.

As part of its initialization, the program sets the timer to 0 so that the event won’t accidently

occur at the beginning of the program:

stop timer 0
timer.period[0] = 0

79

States

Chapters 8 and 9 showed how to use states. The Thymio robot can be in one of 16 states and

you can specify that an event causes an action only if the robot is in certain states. In the

program count-to-two.aesl from Chapter 9, the state is set to 0 when the center bu�on

is touched and then it counts whether the number of claps is even or odd by alternating

between state 0 and state 1. The VPL program and the AESL event handler for touching the

center bu�on are:
5

var state[] = [0,0,0,0]

onevent buttons
when button.center == 1 do

state[0] = 0
state[1] = 0
state[2] = 0
state[3] = 0

end

The state is stored in an array state[] which has 4 components. Each component can be 0 or

1, so there are 2× 2× 2× 2 = 16 possible values in the array. The components of the array

are given initial values of 0 by assigning the four values [0,0,0,0]. The initial value of the

array is also used to specify the number of components in an array; since there are 4 values in

[0,0,0,0], there are 4 components in the array.

The state event block (green, next to the bu�on event block) has all of its quarters set to gray;

this means that the event can occur regardless of the current value of the state. Therefore,

whenever the center bu�on is touched, the state action block (blue) causes all the components

of the array state to be set to 0, as indicated by the white quarters. In the corresponding

AESL program, the when-statement checks if the bu�on was touched, but does not check the

value of the array state. If the bu�on was touched, each component of the array is set to 0.

There are two clap event blocks, each one associated with a di�erent state block. In the textual

program a single mic event handler will be used. The statements to be run will depend on

if-statements (Figure 21.3).

The meaning of the keyword and is that all the conditions in the if-statement must hold in

order to run the statements between then and end. If all components of state are 0, the value

of state[0] is set to 1, while the others are set to 0. This corresponds to the state event block

having all quarters white and the state action block having the upper le� quarter orange and

the others white. Similarly, if value of state[0] is 1 and the values of the other components

are 0, the values of all the components of state are set to 0.
6

5

The AESL program shown here is di�erent from the one generated by VPL as explained later in this chapter.

6

In the state action block, it would be su�icient just to change the upper le� quadrant and gray the other

quadrants since their values don’t change. However, errors are less likely if we explicitly give values (orange or

white) to each of the quadrants.

80

onevent mic
if state[0] == 0 and

state[1] == 0 and
state[2] == 0 and
state[3] == 0 then

state[0] = 1
state[1] = 0
state[2] = 0
state[3] = 0

end
if state[0] == 1 and

state[1] == 0 and
state[2] == 0 and
state[3] == 0 then

state[0] = 0
state[1] = 0
state[2] = 0
state[3] = 0

end

Figure 21.3: Responding to claps according to the state

Subroutines

�ite o�en we need to run the same sequence of statements from many places within a

program. We could write the statements once and copy them each time they are needed. A

simpler solution is to use a subroutine, which assigns a name to a sequence of statements. In

this program, the declaration sub display_state declares a subroutine that assigns the name

display_state to a sequence of statements, here, the single statement call leds.circle:

subroutine to display the current state
sub display_state

call leds.circle(
0, state[1]*32, 0, state[3]*32, 0, state[2]*32, 0, state[0]*32)

When the subroutine is called, it runs the statements assigned to the name of the subroutine:

callsub display_state

The interface function leds.circle sets the eight curved LEDs surrounding the bu�ons. You

really do need to refer to the cheat sheet to learn which parameter sets which LED!

The intensity of each LED is set by giving the corresponding parameter a value between 0

(o�) and 32 (full intensity). The front, back, le� and right LEDs are set to 0 (o�), whereas

the diagonal LEDs are set to on if the corresponding state component is 1 and o� if the state

component is 0. This is achieved by the arithmetic expressions state[...]*32 which multiply

the value of the components of the array by 32. If one of the values is 0, the result is 0, while

if it is 1, the result is 32.

81

Native functions

The program above has a problem. Since the components of the array state are set one-by-

one, it is possible that an di�erent event will occur when some, but not all, of the components

have been set. To set all the components at once, the new values of the state are first set in a

second array new_state and then they are copied to the first array state:

variables for state
var state[4] = [0,0,0,0]
var new_state[4] = [0,0,0,0]

onevent buttons
when button.center == 1 do

new_state[0] = 0
new_state[1] = 0
new_state[2] = 0
new_state[3] = 0

end

call math.copy(state, new_state)
callsub display_state

The native function math.copy is used to copy the arrays. Native functions are built into

the Thymio robot and are more e�icient than sequences of statements in AESL. The native

functions are described in the Aseba documentation.

The current version of AESL allows assignment of entire arrays, so that it would have been

possible to use the assignment statement:
7

state = new_state

7

The array assignment translates into a sequence of individual assignment statements, one for each component,

so nothing is actually gained by using an array assignment statement.

82

Part V

Appendices

83

Appendix A

The VPL User Interface

At the top of the VPL window is a toolbar:

New : Clears the current program and displays an empty program area.

Open : Click to open an existing program in VPL. A window will pop up and you can

navigate to the directory where the program file (extension aesl) exists.

Save : Saves the current program. It is a good idea to click this bu�on frequently so you

don’t lose your work if an fault occurs.

Save as : Saves the current program with a di�erent name. Use it when you have a program

and you want to try something new without changing the existing program.

Undo : Undo previous actions such as deleting an event-actions pair.

Redo : Redo an action that has been undone.

Run : Runs the current program. This bu�on is only active if the compilation was successful.

If you have changed the program a�er a previous run, the bu�on will flash green to remind

you that you must click it to load the modified program into the Thymio robot.

Stop : Stops the program that is running and sets the speed of the motors to zero. Use it

when the program asks the robot to move but does not include an event-actions pair that can

stop the motor.

Advanced mode : The advanced mode enables additional features: states, timers, ac-

celerometers, se�ing sensor thresholds.

Basic mode: The above icon changes to in advanced mode. Click it to return to basic

mode.

84

Help : Opens a browser window with the VPL documentation at:

h�ps://www.thymio.org/en:thymiovpl.

An Internet connection is required.

Export : Exports a graphical image of the program to a file. You can then import the

graphics file into a document such as a textbook or worksheet. Several formats are available.

svg will give the best quality, but png is more widely supported.

85

https://www.thymio.org/en:thymiovpl

Appendix B

Summary of VPL Blocks

Event blocks

Bu�ons. Click on one or more of the images of the bu�ons; they will turn red. An event

will occur if the red bu�ons are touched.

Horizontal sensors (five at the front of the Thymio and two at the back). Click on one or

more of the small squares and they will change color. Initially, all squares are gray, meaning

that the reading of each sensor is ignored.

If the square is white with a red border , an event occurs if a lot of light is reflected.

If the square is black , an event occurs if li�le light is reflected.

Ordinary objects need to be very close to the Thymio before they are detected by the

horizontal sensors. You can greatly increase the range by a�aching reflector tape, such

as used on bicycles, to the objects.
a

Compare the following image with Figure 8.3:

a
My thanks to Francesco Mondada for showing this to me!

Trick

Ground sensors (two on the bo�om of the Thymio). Use like the block for the horizontal

sensors.

, Sensors, advanced mode. Use like the previous blocks. The top slider sets the

86

threshold above which an object is detected and the bo�om slider sets the threshold below

which the absence of an object is detected.

There is an additional mode (the square is dark gray) in which an event occurs if the value

is between to upper and lower threshold.

Tap. An event occurs when the Thymio is tapped.

Tap, advanced mode. Use like the previous block. Click on the small center or right circle

to change to an accelerometer event.

, Accelerometer, advanced mode. Drag the white angle segment on the half-circle

le� or right. An event will occur if the le� / right or forwards / backwards angle (respectively)

of the Thymio is within the segment.

Timer, advanced mode. An event occurs when a timer has counted down to zero. The

timer must have been set by a previous timer action.

State event, advanced mode. The event occurs only if the components of the current

state match the corresponding orange and white quarters of this block. The components

corresponding to the gray quarters need not match.

Action blocks

Motors. Move the le� and right sliders up to increase the forwards rotation of the le�

and right motors, respectively, and move the sliders down to increase the backwards rotation.

Top lights. Move the three sliders to the right to increase the red, green and blue compo-

nents of the top light, respectively.

Bo�om lights. Turns the bo�om lights on. Use like the previous block.

87

Music. The six small circles are notes. A black circle is a short note, a white circle is a long

note and a blank is a rest. Click on a circle to change the length. The five horizontal bars,

represent tones. Click on the bar to move a circle to that bar.

Timer, advanced mode The timer can be set for up to four seconds. Click anywhere

within the white circle showing the face of the clock. There will be a short animation and

then the amount of time until the alarm will be colored blue.

States, advanced mode The four quarters in the block correspond to four components of

a state. Click a quarter to turn it to gray, orange or white.

Notes on the VPL Blocks

When the motors run at the same speed and in di�erent directions, the robot turns

in place. However, if only one motor is on, the robot goes both forwards and turns

towards the side opposite of the running motor. You may need to set a higher power

to overcome ground resistance.

Turning in place or a gentle turn

In most projects, you set a color (white, black, dark gray) in a square in a sensor block

to indicate the the correspoding sensor participates in filtering the events. However,

if all the sensors remain in the original gray, then no filtering is done. The event will

occur 10 times per second no ma�er what values are read from the sensors.

Rapid repetitive sensor events

The same holds true for the bu�on events, except that they occur 20 times per second.

Rapid repetitive bu�on events

88

Appendix C

Tips for Programming with VPL

Exploring and experimenting

Understand each event and action block For each event block and each action block,

spend some time experimenting until you understand exactly how it works. To explore

the behavior of an action block, construct a pair whose event is touching a bu�on. This

is a simple event that will let you concentrate on learning what the action block does.

To explore the behavior of an event block, construct a pair whose action is changing the

color of the robot.

Experiment with the sensor event blocks The small red lights next to each sensor show

when that sensor detects an object. Move your fingers in front of the sensors and see

which lights are turned on. Construct an event-actions pair consisting of the sensor

event and the top color action, and experiment with the se�ings of the small squares in

the event block (gray, white, black, and dark gray in advanced mode).

Experiment with the motors Experiment with the se�ings of the motors so that you get a

general impression how fast the robot moves for particular se�ings. Experiment with

di�erent se�ings for the two motors in order to learn how the robot turns.

Constructing a program

Plan your program Before beginning to write a program, write down a description of how

the program is supposed to work: a sentence for each event-actions pair.

Construct one event-actions pair at a time When you understand how each event-actions

pair works, you can put them together in a program.

Test each addition to the program Test your program each time you add a new event-

actions pair so that you can identify which pair causes an error.

Use Save as a�er modifying a program Before you change your program, click to save

the program under a di�erent name. If the change makes things worse, it will be easy

to go back to the previous version.

Display what happens Use colors to display what the program is doing. For example, if a

sensor in one pair causes the robot to turn le� and a sensor in another pair causes it

to turn right, add an action to each pair that displays di�erent top colors. You will be

able to see if a problem is caused by the sensors or if the motors are not responding

correctly to a sensor event.

89

Troubleshooting

Use a smooth surface Make sure that the surface on which the robot moves—a table or the

floor—is very clean and smooth. Otherwise, the motors may not be able to move the

robot or turns may be uneven.

Use a long cable Make sure that your cable is long enough. If the robot moves too far, the

cable can cause the robot to slow down or stop.

Sensor events may not be detected Sensor events happen 10 times per second. If the

robot is moving very fast, an event might not be detected.

For example, if the robot is supposed to detect the edge of the table and stop, and if the

robot is moving very fast, it might fall o� the table before the sensor event can stop the

motor. When you run a program, start at a low speed and gradually increase it.

For another example, consider the line-following program in Chapter 5. Its algorithm

depends on being able to detect when one ground sensor detects the line and the other

doesn’t. If the robot is moving too fast, the position where only one sensor detects the

line does not cause an event.

Problems with the bo�om sensors In programs like the line-following program, the sen-

sor must distinguish between lots of reflected light and li�le reflected light. Make sure

that there is a lot of contrast between the two. For example, if your table is not light

enough, you can a�ach white paper to get be�er results.

Alternatively, you can adjust the thresholds in advanced mode.

Event-actions pairs are run sequentially In theory, the event-actions pairs are run con-
currently—at the same time; in practice, they are run one a�er the other in the order

they appear. As shown in Exercise 4.2, this can cause a problem, because the second

action might conflict with what was done by the first action.

Problems with the clap event Do not use the clap event when the motors are running.

The motors make a lot of noise and can cause unexpected clap events.

Similarly, do not use the tap event in the same program with the clap event. Tapping

on the robot causes noise that can be interpreted as a clap.

90

Appendix D

Techniques for Using the Sliders

Se�ing the sliders in the motor blocks

It is di�icult to set the sliders precisely so that, for example, both motors run at the same

speed. We can use the translation of the event-actions pairs into an AESL textual program to

improve the precision.

By moving the sliders on the motor action blocks, you will see that the target speeds of

the motors (motor.X.target) jump by steps of 50 in the range−500 to 500. By moving

the sliders carefully, you can set the speeds to any of these values.

Trick

Figure D.1 shows the program from Figure 4.4 (where the pet likes you and follows you

around) along with the text translation at the right of the VPL window. This text is modified

automatically as you move the sliders.

onevent prox means: whenever the event of sampling the horizontal sensors (the proximity
sensors, abbreviated prox) occurs , the instructions on the following lines before end will be

run. The proximity event occurs 10 times a second.

When the event happens, the values of the sensors are checked using a condition. Sensor

number 2 (front center) is checked first: prox.horizontal[2]. If this value is lower than 1000,

the speeds of the le� and right motors are set to 0 using the instructions:

motor.left.target = 0
motor.right.target = 0

Every block if ... then ... end tests a specific sensor and runs the associated in-

structions if the result of test is true. The programs runs the following algorithm:

0. Tests if nothing is in front; if that is true, the robot stops.

1. Tests if something is in front; if that is true, the robot goes forward.

2. Tests if there is something at le�; if that is true, the robot turns le�.

3. Tests if there is something at right; if that is true, the robot turns right.

Once all the sensors have been read and the appropriate action is performed, the program

waits for the next event prox and starts these tests again. This happens again and again until

the program is stopped.

91

onevent prox
if prox.horizontal[2] < 1000 then

motor.left.target = 0
motor.right.target = 0

end
if prox.horizontal[2] > 2000 then

motor.left.target = 300
motor.right.target = 300

end
if prox.horizontal[0] > 2000 then

motor.left.target = -300
motor.right.target = 300

end
if prox.horizontal[4] > 2000 then

motor.left.target = 300
motor.right.target = -300

end

Figure D.1: A VPL program and the corresponding text program.

Se�ing the duration of the timer

The duration in the time action block can be set in multiples of one-quarter second

(250 milliseconds) up to four seconds.

Trick

Sensor event blocks in advanced mode

This section describes features of the sensor event blocks that are availble in advanced mode.

Se�ing the thresholds of the sensors

In basic mode, the thresholds of the sensors are fixed. For the horizontal sensors, a value

above 2000 means that a lot of light is reflected and an event will occur if the corresponding

square is white, while a value below 1000 means that li�le light is reflected and an event will

occur if the corresponding square is black. For the bo�om sensors, the values are 450 and 400.

In advanced mode, the thresholds can be set. The top slider sets the threshold above which a

white event occurs and the bo�om slider sets the threshold below which a black event occurs:

92

(a) Start and stop the robot (b) Correcting deviations

Figure D.2: A program for line following

Figure D.2 shows the line-following program (Figure 5.2) in advanced mode. The sliders are

set so that the threshold is very low: 100 for both the upper and lower thresholds.

Multiple sensors

If several sensors are set, they share the same thresholds:

Events for values between the thresholds

There is an additional mode indicated by a dark gray square:

In this mode, an event occurs if the value read by the read is greater than the lower threshold

(set by the lower slider) and less than the upper threshold (set by the upper slider).

93

	I Tutorial
	Your First Robotics Project
	Changing Colors
	Let's Get Moving
	A Pet Robot
	The Robot Finds Its Way by Itself
	Bells and Whistles
	A Time to Like (Advanced Mode)
	States (Advanced Mode)
	Counting (Advanced Mode)
	Accelerometers (Advanced Mode)

	II Parsons Puzzles
	Parsons Puzzles for VPL

	III Projects
	Braitenberg Creatures
	The Rabbit and the Fox
	Reading Barcodes
	Sweeping the Floor
	Measuring Speed
	Catch the Speeders
	Finite Automata
	Multiple Sensor Thresholds
	Multiple Thymios

	IV From visual to textual programming
	Learning AESL from VPL programs

	V Appendices
	The VPL User Interface
	Summary of VPL Blocks
	Tips for Programming with VPL
	Techniques for Using the Sliders

